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Abstract: Mild Cognitive Impairment (MCI) is a cognitive state frequently observed in older adults,
characterized by significant alterations in memory, thinking, and reasoning abilities that extend
beyond typical cognitive decline. It is worth noting that around 10–15% of individuals with MCI are
projected to develop Alzheimer’s disease, effectively positioning MCI as an early stage of Alzheimer’s.
In this study, a novel approach is presented involving the utilization of eXtreme Gradient Boosting to
predict the onset of Alzheimer’s disease during the MCI stage. The methodology entails utilizing data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Through the analysis of longitudinal
data, spanning from the baseline visit to the 12-month follow-up, a predictive model was constructed.
The proposed model calculates, over a 36-month period, the likelihood of progression from MCI
to Alzheimer’s disease, achieving an accuracy rate of 85%. To further enhance the precision of the
model, this study implements feature selection using the Recursive Feature Elimination technique.
Additionally, the Shapley method is employed to provide insights into the model’s decision-making
process, thereby augmenting the transparency and interpretability of the predictions.

Keywords: Alzheimer’s disease; mild cognitive impairment; machine learning; gradient boosting

1. Introduction

Mild Cognitive Impairment (MCI) is a clinical state marked by subtle yet quantifiable
declines in an individual’s cognitive capabilities. These declines are more pronounced
than the typical age-related changes but do not reach a severity level that substantially
disrupts an individual’s daily life or independence. Such cognitive declines involve mild
impairments in memory, cognitive skills, and cognitive functions [1]. Research has shown
that MCI may serve as an indicator of Alzheimer’s disease (AD), with approximately
10–15% of individuals with MCI progressing to AD annually [2]. According to recent
statistics, an estimated 6.7 million Americans aged 65 and older are currently living with
Alzheimer’s dementia, with this number projected to reach 13.8 million by 2060 unless
significant medical breakthroughs for prevention, slowing, or curing Alzheimer’s disease
are achieved [3]. Despite years of clinical research, there is still no cure for AD. This makes
knowledge of MCI presence a crucial factor for predicting an individual’s risk of developing
AD and, in turn, enables the timely administration of effective treatment or intervention to
slow down its progression [4]. To address this issue, we need to distinguish MCI patients
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who convert to AD (MCIc) from MCI patients who remain stable (MCInc) within a specific
period. To accurately distinguish those two types of MCI (MCIc vs. MCInc), multiple
studies have been conducted from multiple perspectives, such as genetics, medical imaging,
and pathology [5]. At present, varying perspectives exist on the efficacy of biomarkers in
faithfully depicting the progression of preclinical disease over time [6,7].

Traditionally, addressing such problems, such as distinguishing MCIc (MCI due to AD)
from MCInc patients, has been performed manually by clinicians using specific guidelines.
Recent advances in machine learning can help experts automate this process, resulting
in lower error rates and speeding up the diagnostic process. In the field of AD research,
the development of such algorithms tailored for automatic diagnosis and the prediction
of an individual’s future clinical status based on biomarkers has become increasingly
prevalent [8]. Studies have shown that the combination of machine learning techniques and
the analysis of large amounts of heterogenous data collected with non-invasive techniques
may be the future for precisive AD diagnosis. These datasets are sourced from a wide
range of inputs, including medical imaging, biosensors for biofluid marker detection, and
movement sensors, among others [9].

Furthermore, machine learning can assist in identifying cost-effective biomarkers for
predicting the progression of Alzheimer’s disease in an efficient way. This is especially
valuable given that current diagnostic methods depend on costly techniques [10]. Several
novel biomarkers have shown promise in detecting Alzheimer’s disease (AD). These in-
clude neurofilament light (NFL) as a biomarker for neuronal injury, neurogranin, BACE1,
synaptotagmin, SNAP-25, GAP-43, and synaptophysin as biomarkers related to synaptic
dysfunction and/or loss, and sTREM2 and YKL-40 as biomarkers associated with neuroin-
flammation. Additionally, D-glutamate, a coagonist for NMDARs, has shown correlation
with cognitive impairment and potential as a peripheral biomarker for detecting MCI and
AD [10].

Through the analysis of such biomarker data, including Aβ-amyloid, neurofilament
light, and BACE1, and the application of machine learning methodologies, we can create
models that effectively learn patterns to distinguish between healthy individuals and those
with Alzheimer’s disease [10]. When it comes to Aβ-amyloid positivity, machine learning
can help predict Aβ-amyloid future presence in the non-demented population using data
obtained with non-invasive techniques to improve screening processes in clinical trials [11].
Other machine learning approaches include the analysis of T1-weighted MRI scans to
identify the presence of sensitive biomarkers to critical brain regions related to potential
AD development to help distinguish MCIc from MCInc patients, resulting in an accuracy
of 66% [12]. Radiomic feature extraction from medical images can also help predict AD
and MCI in combination with random forest algorithms that can reach accuracies up to
73% [13]. Additionally, there have been approaches that classify dementia into three stages,
including MCI-related conditions, which have shown promising prediction results [14].

However, hybrid approaches, which incorporate longitudinal and heterogeneous data
along with supervised and unsupervised methods, have proven to be more effective under
certain circumstances and generalize better, achieving results with up to 85% accuracy, par-
ticularly in distinguishing between MCI progressive from non-progressive cases [15]. Such
approaches also extend to deep learning, a subset of machine learning, which combines
convolutional neural networks and long short-term memory algorithms using multimodal
imaging and cognitive tests to classify healthy individuals from those with early MCI
(EMCI), with an accuracy of 98.5% [16].

The explainability of these models is crucial for understanding how predictions are
made and, in turn, for pinpointing the key factors driving the progression of AD. This is
particularly important when dealing with blackbox AI systems. Explainable model meth-
ods, such as Shapley Values, offer promising insights into individual model predictions,
showcasing how specific features influence outcomes and revealing inter-feature relation-
ships [17]. Particularly, XGBoost has demonstrated promising interpretability by utilizing
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Shapley Values to uncover specific biomarkers pivotal in the progression likelihood of
Alzheimer’s disease [18].

In this light, we propose an explainable machine learning solution, which aims to
predict cognitive decline in individuals, with a focus on distinguishing instances of MCI
stable cases and MCI to AD cases within a 48-month timeframe from the initial examination
with a specialized medical professional. Given that nearly all cases of AD originate from
MCI, our goal is to discern which instances of MCI will progress to AD in the medium
term (in less than 48 months) or will have a longer timeline before doing so (exceeding
the 48-month timeframe). The importance of this prediction is high, as it can inform the
healthcare professional of a potential worsening in the patient’s condition and can lead
to earlier pharmacologic or non-pharmacologic intervention to delay the transition. Also,
the explainability that is provided can help the treating physician identify the worsening
cognition parameters and specifically target them. While diagnosing MCI can be challeng-
ing, its identification serves as an early indicator of potential progression to Alzheimer’s
disease. Consequently, the development of a predictive model for MCI progression holds
immense promise, offering significant advantages in both research and practical applica-
tions. Although there is significant literature in the application of AI techniques in the
ADNI repository, there are only a few that focus on developing progression models, while
most focus on diagnostic models. In addition, most of the previous research works utilize
individual ADNI cohorts (ADNI1 or ADNI2 or ADNI3 or ADNI GO), depending on the
features required for analysis. In our case, we used all four ADNI cohorts in an attempt to
have a more complete cohort and increase the significance of the obtained results.

2. Materials and Methods

Data used in the preparation of this study were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public–private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of Mild
Cognitive Impairment (MCI) and early Alzheimer’s disease (AD).

2.1. Data and Preprocessing

We used the ADNIMERGE dataset to train and evaluate our proposed model. AD-
NIMERGE is an R package that combines trivial key predictors from all four phases of the
ADNI dataset project coded for applying data analysis and machine learning techniques.
The ADNI (Alzheimer’s Disease Neuroimaging Initiative) dataset is a comprehensive and
longitudinally collected collection of clinical, imaging, genetic, and cognitive data from
participants with Alzheimer’s disease, Mild Cognitive Impairment, and healthy controls.
The principal goal of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) is to explore
and identify biomarkers that can be employed in clinical trials aimed at advancing the
development of treatments for Alzheimer’s Disease [19,20].

The initial dataset comprises a cohort of 2378 patients, encompassing participants
across all ADNI phases. The dataset incorporates a comprehensive set of 64 features,
encompassing a diverse range of information from various domains. These features encom-
pass both biological data, such as APOE4 status, and imaging data, including FDG-PET
scans. Additionally, screening tests such as the Mini-Mental State Examination (MMSE)
and Everyday Cognition Scale are incorporated into the dataset.

A brief description of subjects’ demographics used in this study is shown in Figure 1. This
study predominantly involved male participants, averaging 73 years in age. Furthermore,
most of the subjects identified as Caucasian and were married.
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Figure 1. Demographics summary.

Given the longitudinal nature of the dataset, each patient is represented by multiple
entries corresponding to distinct time points, aligning with the data collection protocol
employed in the respective ADNI phase. Most diagnoses and visits are concentrated in
the early months subsequent to the initial visit, with a discernible decline over time. One
plausible interpretation of this pattern is that participants display a heightened level of
compliance and engagement at the outset of the clinical trial, which diminishes as the
study progresses. Notably, despite the diminishing frequency of visits over time, there
is a consistent adherence to annual intervals, occurring in multiples of 12 months (e.g.,
24 months, 36 months, etc.).

Since there is a high consistency for annual visits, we selected the baseline and follow-
up visit records to predict the progression to AD from MCI within a 24- to 48-month
timeframe. The refined subset then comprised 918 subjects, among whom 636 exhibited sta-
bility throughout the 48-month observation period, while 282 transitioned to Alzheimer’s
disease (AD) within the predictive window. A comprehensive overview of disease progres-
sion within our curated dataset is depicted in the Sankey Diagram in Figure 2.
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Missing values were also present in the dataset. Figure 3 illustrates an overview of
missing values for baseline visits.
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Figure 3. Missing values at baseline visit.

Considering the strict clinical guidelines defined by ADNI, we consider missing data
entries as “Missing Not at Random” (MNAR). This designation signifies that data absence
is not a random occurrence but rather stems from reasons related to the observed data,
resulting in unanticipated lapses in data collection. Specifically, certain features were not
obtained at baseline and follow-up timepoints, with the anticipation that these would
be recorded at subsequent visits. One exception to this assumption is scales related to
“Every Day Cognition Tests” and the “Montreal Cognitive Assessment (MOCA)”, which
were not gathered during the ADNI1 phase and, consequently, were treated as missing
during the training process [21]. For the remaining missing data, the k-nearest neighbors
(KNN) imputation method with k = 5 was employed, considering the target class [22].
Notably, ADNI1 was imputed separately from the rest of the dataset to mitigate potential
imputation bias, given the absence of data for the scales mentioned above during this phase.
To enhance the representation of categorical variables, one-hot encoding was applied.

We modeled the progression from MCI to AD as a binary feature, assigning a value
of “0” denoting the likelihood of the patient remaining stable in the MCI state over the
subsequent 36 months and a value of “1” indicating the likelihood of transitioning to AD
within the same timeframe. (See Figure 4 for a visual depication of the prediction window).
This determination was made by analyzing the diagnosis records of each patient within
the cohort utilized in this study to represent the longitudinal progression of the disease in
one feature. It is worth noting that in some instances, patient visits were recorded under
different ADNI protocols (e.g., some visits occurred during the transition from ADNI 1 to
ADNI 2).
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2.1.1. Model Selection

We employed a comprehensive approach to model selection by comparing the perfor-
mance of various machine learning algorithms: XGBoost, CatBoost, LightGBM, Logistic
Regression, Naïve Bayes, and Decision Tree. The goal was to identify the model that best
captures the underlying patterns in the data and demonstrates robust generalization capa-
bilities. To achieve this, we conducted a thorough evaluation using a 5-fold cross-validation
strategy and evaluated each model’s performance.

2.1.2. XGBoost

XGBoost stands for eXtreme Gradient Boosting, and it is a popular machine learning
algorithm that falls under the category of ensemble classifiers. The fundamental principle
behind the algorithm involves the iterative incorporation of Decision Trees by learning the
negative gradient of the loss function, computed with respect to the disparity between the
predicted value from the preceding tree and the actual value. It systematically performs
feature splitting to grow the ensemble tree. The algorithm leverages the second-order
derivative of the loss function to learn the negative gradient. It also has regularization
capabilities by using a penalty term to prevent overfitting and improve generalization.
Additionally, the algorithm addresses class imbalance by computing the inverse ratio of
positive to negative classes, employing it as a weighting operator for each class [23].

2.1.3. CatBoost

CatBoost, introduced by Prokhorenkova et al. in 2018 [24], is a gradient boosting
algorithm known for its proficiency in handling categorical features, with minimal informa-
tion loss. CatBoost introduces two innovative methods, contributing to its state-of-the-art
performance. Firstly, it addresses the challenge of categorical features by employing a
unique encoding approach, which involves dividing and substituting categories with sev-
eral numeric features, thus minimizing information loss. This process involves random
sorting of input samples and calculating average values for each category. Secondly, Cat-
Boost introduces Ordered Boosting to overcome the gradient estimation bias in traditional
Gradient Boosting Trees (GBDTs). This method utilizes sorting to generate a random ar-
rangement order and number the dataset, enabling unbiased gradient estimation. Though
it involves training a model for each sample, which increases space complexity, CatBoost
optimizes Ordered Boosting and retains the foundational concepts of GBDT to improve
model generalization and stability [25,26].

2.1.4. Light Gradient Boosting Machine

The Light Gradient Boosting Machine (LGBM) is another Gradient Boosting algorithm
that uses leaf-wise techniques to grow trees vertically. To enhance the training process,
LGBM uses the Gradient-based-One-Side-Sampling algorithm (GOSS) that is designed to
emphasize the significance of data instances. GOSS focuses on data samples exhibiting
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larger gradients while intentionally disregarding samples with lower gradients, assum-
ing that they have lower errors. To mitigate potential bias towards samples with larger
gradients, GOSS performs random sampling on data instances with small gradients while
retaining all samples with large ones. Additionally, GOSS introduces a mechanism for
adjusting the weights of data samples with small gradients during the computation of
information gain, aiming to rectify and account for the inherent bias in the dataset [27].

2.1.5. Standard Machine Learning Classifiers

We compared the Gradient Boosting algorithms against standard machine learning
classifiers, such as Naive Bayes, Decision Trees, and Logistic Regression. By contrasting
these advanced techniques with simpler, more traditional approaches, we aimed to provide
a comprehensive understanding of the performance differences between them. Naive
Bayes, recognized for its straightforward probabilistic approach, Decision Trees, prized for
their intuitive structure and ease of interpretation, and Logistic Regression, esteemed for its
linear model formulation, serve as benchmarks in this discourse. Comparing these standard
classifiers against Gradient Boosting algorithms allows for a comprehensive evaluation of
predictive performance, scalability, and computational efficiency.

2.1.6. Experiment Setup and Model Comparison

Instances of each model were trained on the dataset delineated in Section Shapley
Additive Explanations using the default parameters. The implementation was conducted
utilizing Python 3.10 and the scikit-learn library. Subsequently, 5-fold cross-validation was
employed across all models, and the resultant average metrics encompassing accuracy,
precision, and recall were scrutinized for comparative analysis. The selection of the most
suitable model for our dataset was based on these metrics. Detailed findings of this
comparative evaluation are presented in Table 1.

Table 1. Machine learning algorithm comparison.

Algorithm Class Precision Recall Accurary

XGBoost
Stable 0.90 0.89

0.86Transition 0.79 0.77

CatBoost
Stable 0.90 0.88

0.85Transition 0.77 0.76

Light Gradient Boosting Stable 0.89 0.90
0.86Transition 0.76 0.75

Decision Tree
Stable 0.85 0.86

0.79Transition 0.67 0.66

Logistic Regression Stable 0.70 0.91
0.66Transition 0.32 0.11

Naive Bayes Stable 0.87 0.62
0.66Transition 0.47 0.78

The comparative analysis of machine learning algorithms demonstrates that XGBoost
is the most effective performer, exhibiting superior precision and recall scores of 0.79 and
0.77, respectively, alongside an accuracy of 0.86. CatBoost and Light Gradient Boosting
closely follow with similar precision, recall, and accuracy metrics, achieving 0.77, 0.76, and
0.85, and 0.76, 0.75, and 0.86 respectively. Decision Tree exhibits moderate performance,
with precision and recall rates of 0.67 and 0.66, resulting in an accuracy of 0.79. However,
Logistic Regression shows notably lower precision and recall values at 0.32 and 0.11,
respectively, yielding an accuracy of 0.66. Naive Bayes, while displaying satisfactory recall
at 0.78, demonstrates lower precision at 0.47, leading to an accuracy of 0.66, showcasing its
precision–recall trade-offs compared to other algorithms.
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2.2. Training Pipeline

After selecting the best model, we performed the training process using the workflow
presented in Figure 5. We first trained an XGBoost instance using the default parameters to
perform feature selection using the Recursive Feature Elimination algorithm (RFE). This is
a powerful wrapper feature selection algorithm first introduced by Guyon et al. 2002. RFE
removes iteratively weak features whose removal has the lowest impact on training errors
and keeps strong features to improve the model generalization. The weakness of each
feature is determined by a criterion based on the model that the algorithm wraps. In most
cases, the weakness criterion is the feature importance scores assigned by the model during
training. During each iteration, RFE selectively removes a specified number (N) of features
based on their perceived weakness, as indicated by the importance criterion. Following
the removal of features, the algorithm retrains the model on the new set of features and
assesses its performance using a predetermined evaluation metric. This iterative process is
repeated until there is no further improvement in model performance, at which point the
algorithm concludes and returns the set of selected features [28].
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In our case, we used RFE combined with 5-fold cross-validation for evaluation pur-
poses. We adopted a stepwise approach with the step size set to 1, indicating the removal
of one feature at each iteration during the Recursive Feature Elimination with Cross-
Validation (RFE-CV) process. Our evaluation criteria were based on the F1 score, as defined
in Equation (1). The F1 score, encompassing both precision (Equation (2)) and recall
(Equation (3)), is particularly instrumental in comprehensively assessing the performance
of the model. To perform feature selection, we utilized the RFE-CV technique implemented
in the scikit-learn Python package. The workflow and outcomes of our RFE-CV implemen-
tation are depicted in Figure 6, illustrating the systematic elimination of features and the
corresponding impact on the model’s F1 score. This approach provides a robust means of
feature selection, allowing us to identify the optimal subset of features that maximizes the
model’s predictive performance.

F1 score = 2 × precision * recall
precision + recall

(1)

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

RFE feature selection concluded with a subset of 75 features, chosen from an initial
set of 105 features. The features selected after RFE can be found in Appendix A. It is
important to note that the feature vector of 105 features included baseline observations that
were engineered as a separate feature to maintain the baseline of each individual piece of
knowledge across all samples.
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Hyperparameter Tuning

After the feature selection process, we performed hyperparameter tuning to find the
best set of hyperparameters to tune our XGBoost model and maximize the performance.
Hyperparameters are a set of configuration parameters for a machine learning model
that cannot be learned during the training process and require manual adjustment by the
user. Selecting the optimal hyperparameters can prove challenging, often necessitating
trial-and-error approaches when performed manually. To address this problem, various
automatic hyperparameter search algorithms have been proposed throughout the years,
treating the search problem as an optimization problem where the objective function is
unknown or a blackbox function. In this paper, we chose the Bayesian Optimization (BO)
algorithm to efficiently determine the optimal set of hyperparameters using a few samples
of the dataset. Bayesian optimization proves to be a valuable approach in tackling functions
where determining extrema is computationally expensive. Its applicability extends to
functions lacking a closed-form expression and those that involve expensive calculations,
challenging derivative evaluations, or exhibit non-convex characteristics. In summary of
the process, BO models the relationship between a given set of parameter combinations
and model’s performance by fitting a Gaussian Process (GP). Then, it optimizes the GP
to find the next promising combination of parameters. Each combination is evaluated by
training the model and evaluating it using a given evaluation metric. In this paper, the
evaluation metric is the F1-score presented in Equation (1). The process is repeated until
a specific criterion is met. In most cases, the ending criterion is the maximum number of
iterations provided by the researcher [29,30].

After the application of Bayesian Optimization, the parameters presented in Table 2
were attained.
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Table 2. Parameters selected after Bayesian Optimization.

Parameter Value

colsample bytree 0.6714223800630487
gamma 0.7244817045778367

Learning_rate 0.01
min_child_weight 10

n_estimators 1000
Scale_pos_weight 5.0

subsample 0.5676926067435525
Max_depth 7

3. Results

We trained the final XGboost instance using the features selected from RFE and
the hyperparameters chosen with Bayesian Optimization. To assess the robustness and
generalization capability of the model, we employed stratified 5-fold cross-validation. This
technique involves splitting the dataset into five subsets (folds), ensuring that each fold
maintains the same class distribution as the original dataset. The model is trained on four
folds and validated on the remaining one in each iteration. This process is repeated five
times, and the performance metrics, including F1-score, precision, recall, accuracy, and
ROC AUC score, are averaged over the folds to provide a comprehensive evaluation. ROC
AUC score stands for Area Under the Receiver Operating Characteristic curve and shows
how well a binary classification can distinguish the two classes. In medical diagnosis,
such information is vital, as misclassifying patients can lead to greater disease severity.
Summarized results from the table process are presented in Table 3.

Table 3. Average results from 5-fold cross-validation.

Target Class Precision Recall F1-Score Accuracy ROC AUC

Stable 0.94 0.84 0.90
0.85 0.86Transition 0.71 0.88 0.79

As expected, the model demonstrates higher accuracy in predicting the stable class
compared to the transition class, achieving precision and recall scores exceeding 0.90 in
some folds. This can be ascribed to the absence of any rebalancing methodology applied
during the dataset curation process, thereby facilitating a dataset composition that endeav-
ors to mirror real-world conditions to the greatest extent possible. Also, the difference
observed between recall and precision in the transition class is ascribed to the use of the
scale_pos_weight parameter during the hyperparameter optimization phase. This param-
eter imparts a heightened sensitivity of the model to the transition class as a measure to
mitigate class imbalance. This technique results in slightly higher recall scores accompa-
nied by a marginal reduction in precision scores, which deviate slightly from anticipated
levels. The rationale for accepting this trade-off lies in the heightened significance accorded
to accurately classifying patients within the transition class (as indicated by the higher
recall), even if it entails the inclusion of certain false-positive predictions in the resultant
predictive outcomes. Additionally, it is imperative to recognize the inherent complexity of
the Alzheimer’s disease (AD) diagnosis and prognosis, constituting an exceptionally chal-
lenging problem that necessitates a substantial volume of heterogeneous data for achieving
accurate predictions. This effect can be visually observed in the summarized confusion
matrix in Figure 7.
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Shapley Additive Explanations

Interpreting the model’s predictions is crucial when it comes to medical diagnosis.
To address this issue, there have been numerous sophisticated methodologies to interpret
blackbox machine learning models. One of the most famous explainable AI methodologies
is SHAP values, which find their origin in game theory. Fundamentally, SHAP transforms
the feature space of XGBoost into a clinical variable space, wherein each transformed SHAP
value corresponds to an original variable. This transformation facilitates a more clinically
meaningful interpretation of the model’s output. Graphically, SHAP often visualizes
XGBoost predictions to enhance interpretability. For instance, the SHAP summary plot
succinctly illustrates the magnitudes and directions of predictions, wherein the size of a
SHAP value signifies the contribution of a specific feature. Larger values indicate a more
substantial contribution to prediction performance. Moreover, the SHAP dependency plot
offers insights into the distribution of SHAP values across individuals for a given feature.
As SHAP values vary among individuals, so do the predictions of the corresponding
feature mappings for those individuals. This understanding provides a comprehensive
view of the impact of individual features on model predictions, offering a valuable tool
for researchers and practitioners in comprehending and validating the XGBoost model’s
decision-making processes [18,31]. We applied SHAP Additive Explanations to interpret
the model’s decision-making processes.

4. Discussion

In this study, an interpretable machine learning model was developed using eXtreme
Gradient Boosting and the Shapley explanation framework. The model was trained on the
ADNI dataset, including all four phases of ADNI, with the latest being ADNI-3 at the time
of writing. The dual purpose of this study was to develop a machine learning model with
the primary goal of accurately distinguishing between individuals with Mild Cognitive
Impairment (MCI) who will experience stability in their cognitive function (MCIs) and
those who will progress to Alzheimer’s disease soon (MCIc). Additionally, the secondary
aim was to interpret the model’s decision process to help clinicians understand the reasons
behind each prediction to make them trust the ML system. To achieve this, we chose to
train the model across all ADNI phases in an effort to develop a framework that can be
adopted in heterogeneous dataset types since the data collection protocol has changed
gradually from ADNI1 to the ADNI3 phase. It is essential to acknowledge that we did not
employ any direct balancing methodology in the development of our model. However,
to mitigate potential issues arising from the unbalanced nature of our data, we utilized
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stratified k-fold cross-validation. This decision was deliberate, as it reflects a conscious
choice to align our modeling approach with the prevalence of Mild Cognitive Impairment
and Alzheimer’s disease patients in the general population. In real-life conditions, individ-
uals diagnosed with MCI and AD represent a minority within the broader demographic
landscape. This approach is particularly crucial in the development of medical models,
where accurately mirroring real-world prevalence is essential for model reliability and
relevance. In addressing the target class modeling problem, we adopted a unique approach.
Our strategy involved grouping MCI patients, regardless of the onset time of AD up to
their 48th visit since baseline, subsequently annotating the conversion using a binary target
feature created in the dataset used. This approach was used to construct a model capable of
providing predictions that reflect diverse real-life scenarios. Through exposing the model
to a variety of samples showcasing conversion tendencies, our objective was to direct its
learning process in discerning the factors indicative of a patient’s potential progression to
AD. Our methodology surpassed similar techniques in performance, although it is worth
acknowledging the current limitations of our comparative analysis. At the time of writing,
most of the research available mainly focuses on developing diagnostic or potentially prog-
nostic methodologies, rather than specifically tailored prognostic techniques. Additionally,
while most prognostic methods predict within a fixed time window for conversion, our
approach offers a more adaptable timeframe of 4 years (48 months) from the baseline visit.
A method proposed by Fuliang et al. (2023) can partially be compared with our proposed
solution since we both used similar approaches in terms of XGBoost and SHAP setup, but
their approach is purely diagnostic. Our model showcased higher-sensitivity performance,
which is crucial in medical models, despite their diagnostic orientation [18]. Other studies
that use machine learning for the early diagnosis of AD analyzing MRIs and their variants
also seem to slightly fall under in terms of performance when compared to our approach.
Although they exhibit accuracy levels similar to ours, their sensitivity scores are slightly
lower in the same time window [5,32,33].

In Figure 8, the SHAP summary plot illustrates the top-10 features generated by
XGBoost. These features are arranged in descending order based on their SHAP values
for all predictions. The SHAP values indicate the positive or negative associations of the
respective features, and the absolute SHAP value for each feature is displayed on the
left side. Every data point depicted in the plot represents an individual sample, with
the horizontal axis indicating the SHAP value of a specific feature across subjects. This
axis serves as a gradient, ranging from low (depicted in blue) to high (represented in
red), reflecting the magnitude of the SHAP value. Apparently, cognitive test results have
a moderate influence on model outcome. For example, high scores on the ADAS-Cog
13 scale indicate a possible cognitive impairment and, thus, a possible transition to AD
in the near feature [34]. In contrast with ADAS-Cog-13, lower scores on the PACC scale
(mPACCtrailsB and mPACCdigit) indicate potential cognitive decline [35]. As anticipated,
additional biomarkers derived from imaging and clinical tests exert a considerable impact
on the ultimate decision. Biomarkers such as ABETA and Entorhinal, indicative of the
brain’s status, exhibit notably low values, contributing significantly to the overall outcome.

The features that impact the model based on their average SHAP value are presented
in Figure 9. It is important to highlight the role of the “DX_bl” feature, representing the
baseline diagnosis, in our prediction process. Our dataset includes Alzheimer’s disease
(AD) patients who did not show cognitive decline at the start, aligning with our study’s
focus. This feature mainly helps the model differentiate between AD and Mild Cognitive
Impairment (MCI) patients, rather than distinguishing between progressing MCI (MCIc)
and stable MCI (MCIs). As expected, biomarkers and assessment tests related to cognitive
function have a moderate impact on the model’s outcome.
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5. Conclusions

In real-world clinical studies, the early identification of Alzheimer’s disease is a com-
plex and challenging task for clinicians involving various procedures, including cognitive,
psychiatric, and biomarker tests. Not only are some of these assessments time-consuming
for both clinicians and patients but they also involve invasive procedures, rendering them
not only inefficient in terms of time but also cost-ineffective. Machine learning can im-
prove the prognostic process for Alzheimer’s disease by identifying useful information
within large amounts of clinical data and, thus, pave the way for more time-effective and
non-invasive prognostic methods. At the same time, machine learning can help clinicians
understand how the disease progresses in patients through biomarker analysis, enabling
the timely administration of appropriate treatment. Our proposed framework can con-
tribute to the above aims. Our results showed that the proposed XGBoost model can
accurately predict the conversion from MCI to AD within 36 months from baseline with
low error rates. Integrating the SHAP framework with the prediction model allows us to
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interpret the model’s decision process for each given sample, providing transparency to
clinicians and enhancing the model’s reliability. Despite these promising results, further
research is essential to develop models with minimal error rates and implement them
in real-world conditions. To achieve this, it is imperative to train models on extensive
datasets, representing real-life scenarios that may differ across various clinics and hospitals.
Furthermore, the optimization of these models requires attention to factors influencing the
decision-making process in different healthcare settings, always prioritizing the well-being
and safety of patients.

6. Limitations

This study has potential limitations. The proposed model was specifically trained to
predict the transition from Mild Cognitive Impairment (MCI) to Alzheimer’s disease (AD),
while excluding the possibilities of transitions from Cognitively Normal (CN) to MCI and
CN to AD. The proposed approach needs further clinical verification against an external
dataset. The model needs two timepoints to make an accurate prediction, which translates
to two physical visits.
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Appendix A

Below is the subset of features selected after Recursive Feature Elimination. For
continuous values, the median, mean, max, and standard deviation are provided, and for
discrete values, the membership status is provided.

www.fnih.org
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Feature Median Mean Max Std Membership
Status

0 DX_bl [2.0, 1.0]
1 AGE 74 73.53801743 91.4 7.610487740946301
2 PTEDUCAT 16 15.790849673202615 20 2.8848952582917042
3 APOE4 [1.0, 0.0, 2.0]
4 FDG 1.422475 1.279733683442266 1.57338 0.17810577352607126
5 CDRSB 2 2.6919389978213513 15 2.3115707124725917
6 ADAS11 11.33 13.06316557734205 56.33 7.848523985235578
7 ADAS13 19 20.335211328976037 71.33 10.712926813970377
8 ADASQ4 7 6.328322440087145 10 2.8895712942428418
9 MMSE 27 25.861220043572985 30 3.819875621530087
10 RAVLT_immediate 30 30.709586056644877 71 11.989765521262475
11 RAVLT_learning 3 3.3753812636165574 12 2.626026021958254
12 RAVLT_forgetting 5 4.550762527233116 14 2.727335365616795
13 RAVLT_perc_forgetting 83.3333 68.94227735294118 100 66.12887476892881
14 LDELTOTAL 4 5.311111111111112 25 5.1133143144938495
15 TRABSCOR 107.5 138.7888888888889 300 83.34054120772674
16 FAQ 4 7.128322440087145 30 7.761732851339966
17 Ventricles 39,943.79 44,969.496797385626 151,426 23,686.835523710066
18 Hippocampus 6390.5 6366.0328758169935 10,452 1201.5157640328403
19 WholeBrain 1,007,820 1,009,664.1372549019 1,428,190 112,656.48231469237
20 Entorhinal 3281.6 3285.5557734204795 5770 773.1931836208981
21 Fusiform 16,739.5 16,767.563834422657 28,878 2781.09519
22 MidTemp 18,553.4 18,716.070370370373 29,006 2960.8444166415316
23 ICV 1,522,580 1,540,374.3877995643 2,100,210 164,601.06052299083
24 mPACCdigit −8.21001 −8.66117474 5.95912 6.933461669969725
25 mPACCtrailsB −7.9708 −8.337507947 6.13315 6.824617271140973
26 CDRSB_bl 1.5 2.070806100217865 10 1.5453513515946802
27 ADAS11_bl 11 11.881372549019607 36 5.700384925550372
28 ADAS13_bl 18 18.951222222222224 50 8.290366685918455
29 MMSE_bl 27 26.715686274509803 30 2.550000345894958
30 RAVLT_immediate_bl 30 32.001960784313724 68 10.788177445521617
31 RAVLT_learning_bl 3 3.621786492374728 11 2.575508392318168
32 RAVLT_forgetting_bl 5 4.614596949891068 13 2.296667824916341
33 RAVLT_perc_forgetting_bl 71.4286 66.49644300653596 100 32.46909675562216
34 LDELTOTAL_BL 4 4.790849673202614 18 3.62889217
35 TRABSCOR_bl 105.1 131.97015250544663 300 76.91764281066624
36 FAQ_bl 3 5.153159041394336 30 6.195501396652368
37 mPACCdigit_bl −7.385415 −7.820029706 2.23768 4.944942117584728
38 mPACCtrailsB_bl −6.988085 −7.485260064 2.7732 4.926875777371472
39 Ventricles_bl 37,837.5 42,501.538061002175 157,713 22,875.046972145934
40 Hippocampus_bl 6528 6547.429477124183 9929 1178.2954938265814
41 WholeBrain_bl 1,015,965 1,020,942.0840958606 1,443,990 113,929.04757611542
42 Entorhinal_bl 3360.5 3365.5603485838783 5896 770.1566993159872
43 Fusiform_bl 17,023.5 17,064.395642701526 26,280 2763.6379991806716
44 MidTemp_bl 19,086.3 19,171.861437908494 29,292 2966.722264517154
45 ICV_bl 1,527,190 1,542,547.285 2,714,340 169,932.87108013846
46 FDG_bl 1.1870850000000002 1.2005082629629629 1.70113 0.1342208035987261
47 Years_bl 1.00205 1.0118026601307188 1.2512 0.049772686
48 TAU_bl 298.89 305.8513442265795 816.9 110.61959394290388
49 ABETA_bl 754.74 867.6725054466232 1700 380.51187522862955
50 PTAU_bl 29.145 30.04860784313726 94.86 12.535837824740023
51 TAU 297.9 317.38917211328976 802.4 73.68806040025473
52 DX [2, 1]
53 MOCA 23 22.769162995594716 30 4.020161189133941
54 EcogPtLang 1.77778 1.8973843788546254 4 0.6874612645623314
55 EcogPtVisspat 1.28571 1.507761947136564 4 0.6135489175939899
56 EcogPtPlan 1.4 1.5351908810572688 3.8 0.6146249328058496
57 EcogPtDivatt 2 2.006057268722467 4 0.8197753125466491
58 EcogPtTotal 1.74359 1.8405794669603526 3.69231 0.5772989648737149
59 EcogSPLang 1.58611 1.8575385903083699 4 0.7996222455335457
60 EcogSPPlan 1.5 1.8114684140969162 4 0.9016202278521113
61 EcogSPOrgan 1.66667 1.9126724317180617 4 0.9180337285803657
62 EcogSPDivatt 2 2.182672577092511 4 0.9494293241028594
63 EcogSPTotal 1.74359 1.9563972290748899 3.97368 0.7966188010118953
64 MOCA_bl 23 22.822907488986782 30 3.5954600273400152
65 EcogPtLang_bl 1.77778 1.9069771189427316 4 0.6946476139514485
66 EcogPtVisspat_bl 1.28571 1.4918661453744495 4 0.619250998
67 EcogPtOrgan_bl 1.416666 1.6129223039647576 4 0.6744607742485486
68 EcogPtDivatt_bl 1.75 1.9948237885462554 4 0.8070685154926579
69 EcogPtTotal_bl 1.7142400000000002 1.8485160044052862 3.85294 0.5781348132153441
70 EcogSPMem_bl 2.25 2.3429122026431717 4 0.8585914694597968
71 EcogSPLang_bl 1.55556 1.7631507488986786 4 0.7370702823814411
72 EcogSPVisspat_bl 1.266666 1.5279054140969162 4 0.6853481425640744
73 EcogSPOrgan_bl 1.5 1.735022181 4 0.800743658
74 EcogSPTotal_bl 1.71053 1.8598564933920703 3.89744 0.6867589759636067
75 Transition [0, 1]
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